

Name: _____

Date: _____

Questions and Answers: [AP Statistics Past Exam Questions – AP Central | College Board](#)

2015 FRQ: #3

A shopping mall has three automated teller machines (ATMs). Because the machines receive heavy use, they sometimes stop working and need to be repaired. Let the random variable X represent the number of ATMs that are working when the mall opens on a randomly selected day. The table shows the probability distribution of X .

Number of ATMs working when the mall opens	0	1	2	3
Probability	0.15	0.21	0.40	0.24

- What is the probability that at least one ATM is working when the mall opens?
- What is the expected value of the number of ATMs that are working when the mall opens?
- What is the probability that all three ATMs are working when the mall opens, given that at least one ATM is working?
- Given that at least one ATM is working when the mall opens, would the expected value of the number of ATMs that are working be less than, equal to, or greater than the expected value from part (b) ? Explain.

2017 FRQ #3

A grocery store purchases melons from two distributors, J and K. Distributor J provides melons from organic farms. The distribution of the diameters of the melons from Distributor J is approximately normal with mean 133 millimeters (mm) and standard deviation 5 mm.

- For a melon selected at random from Distributor J, what is the probability that the melon will have a diameter greater than 137 mm?

Distributor K provides melons from nonorganic farms. The probability is 0.8413 that a melon selected at random from Distributor K will have a diameter greater than 137 mm. For all the melons at the grocery store, 70 percent of the melons are provided by Distributor J and 30 percent are provided by Distributor K.

- For a melon selected at random from the grocery store, what is the probability that the melon will have a diameter greater than 137 mm?
- Given that a melon selected at random from the grocery store has a diameter greater than 137 mm, what is the probability that the melon will be from Distributor J?

2018 FRQ #3

Approximately 3.5 percent of all children born in a certain region are from multiple births (that is, twins, triplets, etc.). Of the children born in the region who are from multiple births, 22 percent are left-handed. Of the children born in the region who are from single births, 11 percent are left-handed.

- What is the probability that a randomly selected child born in the region is left-handed?
- What is the probability that a randomly selected child born in the region is a child from a multiple birth, given that the child selected is left-handed?
- A random sample of 20 children born in the region will be selected. What is the probability that the sample will have at least 3 children who are left-handed?

2019 FRQ #3

A medical researcher surveyed a large group of men and women about whether they take medicine as prescribed. The responses were categorized as never, sometimes, or always. The relative frequency of each category is shown in the table.

	Never	Sometimes	Always	Total
Men	0.0564	0.2016	0.2120	0.4700
Women	0.0636	0.1384	0.3280	0.5300
Total	0.1200	0.3400	0.5400	1.0000

- (a) One person from those surveyed will be selected at random.
 - (i) What is the probability that the person selected will be someone whose response is never and who is a woman?
 - (ii) What is the probability that the person selected will be someone whose response is never or who is a woman?
 - (iii) What is the probability that the person selected will be someone whose response is never given that the person is a woman?
- (b) For the people surveyed, are the events of being a person whose response is never and being a woman independent? Justify your answer.
- (c) Assume that, in a large population, the probability that a person will always take medicine as prescribed is 0.54. If 5 people are selected at random from the population, what is the probability that at least 4 of the people selected will always take medicine as prescribed? Support your answer.

2019 FRQ #5

A company that manufactures smartphones developed a new battery that has a longer life span than that of a traditional battery. From the date of purchase of a smartphone, the distribution of the life span of the new battery is approximately normal with mean 30 months and standard deviation 8 months. For the price of \$50, the company offers a two-year warranty on the new battery for customers who purchase a smartphone. The warranty guarantees that the smartphone will be replaced at no cost to the customer if the battery no longer works within 24 months from the date of purchase.

- (a) In how many months from the date of purchase is it expected that 25 percent of the batteries will no longer work? Justify your answer.
- (b) Suppose one customer who purchases the warranty is selected at random. What is the probability that the customer selected will require a replacement within 24 months from the date of purchase because the battery no longer works?
- (c) The company has a gain of \$50 for each customer who purchases a warranty but does not require a replacement. The company has a loss (negative gain) of \$150 for each customer who purchases a warranty and does require a replacement. What is the expected value of the gain for the company for each warranty purchased?

2021 FRQ #3

To increase morale among employees, a company began a program in which one employee is randomly selected each week to receive a gift card. Each of the company's 200 employees is equally likely to be selected each week, and the same employee could be selected more than once. Each week's selection is independent from every other week.

- (a) Consider the probability that a particular employee receives at least one gift card in a 52-week year.
 - (i) Define the random variable of interest and state how the random variable is distributed.
 - (ii) Determine the probability that a particular employee receives at least one gift card in a 52-week year. Show your work.
- (b) Calculate and interpret the expected value for the number of gift cards a particular employee will receive in a 52-week year. Show your work.
- (c) Suppose that Agatha, an employee at the company, never receives a gift card for an entire 52-week year. Based on her experience, does Agatha have a strong argument that the selection process was not truly random? Explain your answer.

2022 FRQ #3

A machine at a manufacturing company is programmed to fill shampoo bottles such that the amount of shampoo in each bottle is normally distributed with mean 0.60 liter and standard deviation 0.04 liter. Let the random variable A represent the amount of shampoo, in liters, that is inserted into a bottle by the filling machine.

- (a) A bottle is considered to be underfilled if it has less than 0.50 liter of shampoo. Determine the probability that a randomly selected bottle of shampoo will be underfilled. Show your work.

After the bottles are filled, they are placed in boxes of 10 bottles per box. After the bottles are placed in the boxes, several boxes are placed in a crate for shipping to a beauty supply warehouse. The manufacturing company's contract with the beauty supply warehouse states that one box will be randomly selected from a crate. If 2 or more bottles in the selected box are underfilled, the entire crate will be rejected and sent back to the manufacturing company.

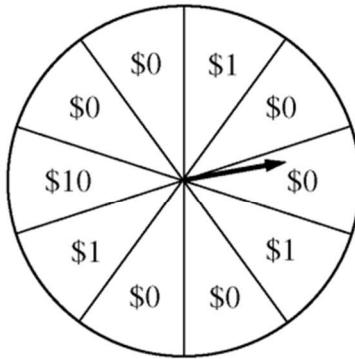
- (b) The beauty supply warehouse manager is interested in the probability that a crate shipped to the warehouse will be rejected. Assume that the amounts of shampoo in the bottles are independent of each other.
 - (i) Define the random variable of interest for the warehouse manager and state how the random variable is distributed.
 - (ii) Determine the probability that a crate will be rejected by the warehouse manager. Show your work.

To reduce the number of crates rejected by the beauty supply warehouse manager, the manufacturing company is considering adjusting the programming of the filling machine so that the amount of shampoo in each bottle is normally distributed with mean 0.56 liter and standard deviation 0.03 liter.

- (c) Would you recommend that the manufacturing company use the original programming of the filling machine or the adjusted programming of the filling machine? Provide a statistical justification for your choice.

2014 FRQ #3

Schools in a certain state receive funding based on the number of students who attend the school. To determine the number of students who attend a school, one school day is selected at random and the number of students in attendance that day is counted and used for funding purposes. The daily number of absences at High School A in the state is approximately normally distributed with mean of 120 students and standard deviation of 10.5 students.


(a) If more than 140 students are absent on the day the attendance count is taken for funding purposes, the school will lose some of its state funding in the subsequent year. Approximately what is the probability that High School A will lose some state funding?

(b) The principals' association in the state suggests that instead of choosing one day at random, the state should choose 3 days at random. With the suggested plan, High School A would lose some of its state funding in the subsequent year if the mean number of students absent for the 3 days is greater than 140. Would High School A be more likely, less likely, or equally likely to lose funding using the suggested plan compared to the plan described in part (a)? Justify your choice.

(c) A typical school week consists of the days Monday, Tuesday, Wednesday, Thursday, and Friday. The principal at High School A believes that the number of absences tends to be greater on Mondays and Fridays, and there is concern that the school will lose state funding if the attendance count occurs on a Monday or Friday. If one school day is chosen at random from each of 3 typical school weeks, what is the probability that none of the 3 days chosen is a Tuesday, Wednesday, or Thursday?

2012 FRQ #2

A charity fundraiser has a Spin the Pointer game that uses a spinner like the one illustrated in the figure below.

A donation of \$2 is required to play the game. For each \$2 donation, a player spins the pointer once and receives the amount of money indicated in the sector where the pointer lands on the wheel. The spinner has an equal probability of landing in each of the 10 sectors.

(a) Let X represent the net contribution to the charity when one person plays the game once. Complete the table for the probability distribution of X .

x	\$2	\$1	-\$8
$P(x)$			

(b) What is the expected value of the net contribution to the charity for one play of the game?

(c) The charity would like to receive a net contribution of \$500 from this game. What is the fewest number of times the game must be played for the expected value of the net contribution to be at least \$500?

(d) Based on last year's event, the charity anticipates that the Spin the Pointer game will be played 1,000 times. The charity would like to know the probability of obtaining a net contribution of at least \$500 in 1,000 plays of the game. The mean and standard deviation of the net contribution to the charity in 1,000 plays of the game are \$700 and \$92.79, respectively. Use the normal distribution to approximate the probability that the charity would obtain a net contribution of at least \$500 in 1,000 plays of the game.